Cycloaddition of Alkenylidenecyclopropanes with 4-Phenyl-1,2,4-triazoline-3,5-dione ${ }^{1}$

Daniel J. Pasto,* A. F.-T. Chen, and G. Binsch
Contribution from the Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556. Received May 2, 1972

Abstract

Alkenylidenecyclopropanes 1 react rapidly with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) to form 6-isopropylidene-7-alkylidene-1,3,5-triazabicyclo[3.3.0]octane-2,4-diones (2). The stereochemistry about the 7 -alkylidene functions in 2 has been established, and the observed stereochemical features of the reactions are discussed in terms of the Möbius-Hückel concept of orbital interactions occurring in the transition states for the reacactions. The extremely facile cycloaddition and mode of reaction of 1 with PTAD are contrasted with the reactions of methylenecyclopropanes with PTAD. The differences in reactivity and mode of reaction are discussed in terms of a MO description of the bonding in 1 involving interaction between the $\mathrm{C}_{4}-\mathrm{C}_{5} \pi$ bond and the Walsh orbitals of the cyclopropane ring leading to a particularly favorable frontier orbital interaction in the transition states for cycloaddition which is not present in the methylenecyclopropanes or the transition states for reaction of the methylenecyclopropanes with PTAD. The 1:1 adducts 2 in most cases react further with PTAD to form $2: 1$ adducts. The structures and stereochemical features of these ($\pi 4+\pi^{2}$) cycloaddition reactions are discussed in terms of the structural features present in the 1:1 adducts.

TThe $\left({ }_{\pi} 4+{ }_{\pi}{ }^{2}\right)$ cycloaddition of functionally substituted 1,3-alkadienes with alkenes (the DielsAlder reaction) has provided the synthetic organic chemist with a powerful method for the synthesis of six-membered ring compounds. ${ }^{2}$ The extremely facile nature of the ($\pi^{4}+\pi_{\pi}$) cycloaddition reactions, compared with $\left(\pi^{2}+\pi_{\pi}\right.$) cycloaddition reactions of alkenes, has been discussed in terms of conservation of orbital symmetry ${ }^{3 \mathrm{a}}$ and frontier orbital interactions ${ }^{3 b}$ in the respective transition states.

Cycloaddition reactions in which one of the π bonds of either the diene or the dienophile is replaced by a strained σ bond are less well known. A number of $\left({ }_{\sigma} 2+\pi_{\pi}\right.$) cycloadditions involving the participation of a strained σ bond of a cyclopropane have recently been reported. Bicyclo[1.1.0]butanes ${ }^{4}$ and bicyclo[2.1.0]pentanes ${ }^{5}$ react with reactive dienophiles in $\left.\left({ }_{\sigma} 2+{ }_{\pi}\right)^{2}\right)$ cycloaddition reactions via diradical intermediates. Cyclopropanones undergo numerous cycloaddition reactions in which the cyclopropanone ring suffers cleavage. ${ }^{6}$

Examples of the participation of a strained σ bond of a cyclopropane derivative in a $(4+2)$ cycloaddition reaction are less well known. It is surprising that such reactions have not received attention previously, particularly in view of the synthetic potential such re-
(1) (a) Cycloaddition Reactions of Cyclopropane-Containing Systems. III. For the previous paper in this series, see D. J. Pasto and A. F.-T. Chen, Tetrahedron Lett., 2995 (1972). (b) Submitted by A. F.-T. C. in partial fulfilment of the requirements of the Ph.D., University of Notre Dame, Notre Dame, Ind., 1972.
(2) A. Wasserman, "Diels-Alder Reactions," Elsevier, New York, N. Y., 1965: J. Sauer, Angew. Chem., Int. Ed. Engl., 5, 211 (1966): 6, 16 (1967).
(3) (a) R. Hoffmann and R. B. Woodward, J. Amer. Chem. Soc., 87, 2047. 4388 (1965): Angew. Chem., Int. Ed. Engl.. 8, 781 (1969); (b) K. Fukui, "Molecular Orbitals in Chemistry, Physics. and Biology,', P. O. Lówdin and B. Pullman, Ed., Academic Press, New York, N. Y., 1964, p 513.
(4) A. Cairncross and E. P. Blanchard. Jr., J. Amer. Chem. Soc., 88, 496 (1966): M. Pomerantz, G. W. Gruber, and R. N. Wilke, ibid., 90, 5040 (1968): C. D. Smith, ibid., 88, 4273 (1966).
(5) P. G. Gassman and G. D. Richmond, ibid., 92, 2090 (1970): 90,5637 (1968): Chem. Commun., 1630 (1968); P. G. Gassman and K. T. Mansfield, J. Amer. Chem. Soc., 90, 1524 (1968): Chem. Commun., 391 (1965); P. G. Gassman, K. T. Mansfield, and T. J. Murphy, J. Amer. Chem. Soc., 91, 1684 (1969).
(6) N. J. Turro, S. S. Edelson, and R. B. Gagosian, J. Org. Chem., 35, 2058 (1970), and references cited therein.
actions might possess in the synthesis of five- and sevenmembered ring systems (represented in a very naive fashion in eq 1 and 2). An example of the type of re-

action illustrated in eq 1 has appeared, that being the reaction of α-cyclopropylstyrene with maleic anhydride to produce 4-phenylcyclohept-4-ene-1,2-dicarboxylic anhydride. ${ }^{7-9}$

In view of the paucity of information on reactions of the type illustrated in eq 1 and 2, we initiated an investigation of cycloaddition reactions of cyclopropanecontaining compounds. We have reported preliminary results on the reaction of alkenylidenecyclopropanes 1^{10} and methylenecyclopropanes ${ }^{11}$ with 4-phenyl-1,2,4-
(7) S. Sarel and E. Breuer, J. Amer. Chem. Soc., 81, 6522 (1959).
(8) We have been unable to reproduce this reaction under the reported reaction conditions. We are continuing to pursue investigations of this type of reaction.
(9) More recently it has been reported that a number of vinylcyclopropanes react with tetracyanoethylene in ($\pi^{2}+\pi^{2}$) cycloaddition reactions: F. Effenberger and W. Podszun, Angew. Chem., Int. Ed. Engl., 8, 976 (1969): S. Nishida, I. Moritani, and T. Teraji, Chem. Commun., 501 (1970).

(10) D. J. Pasto and A. F.-T. Chen, J. Amer. Chem. Soc., 93, 2562 (1971).
(11) See reference in footnote 1.

triazoline-3,5-dione (PTAD). ${ }^{12}$ Whereas alkenylidenecyclopropanes react very rapidly with PTAD to give products of general structure $2,{ }^{10}$ methylenecyclopropanes undergo only very slow $(2+2)$ cycloaddition of the exocyclic double bond with PTAD. ${ }^{11}$

Results

2-Phenylisobutenylidenecyclopropane (3) with PTAD.
(12) Subsequent to the initiation of our studies it was reported that 2-phenyl- and 2,2-diphenylmethylenecyclopropane undergo concerted cycloaddition with tetracyanoethylene to form adducts of structure i. ${ }^{13}$ These observations are in distinct contrast with our results derived

from reactions of methylenecyclopropanes with PTAD ${ }^{11}$ and will be discussed in greater detail later in this paper.
(13) R. Noyori. N. Hayashi, and M. Kato, J. Amer. Chem. Soc., 93, 4948 (1971).

The addition of 1 equiv of a 0.4 M solution of PTAD in dichloromethane to 1 equiv of a $0.4 M$ solution of 3 in dichloromethane at 0° resulted in the immediate disappearance of the red color of the PTAD. Removal of the solvent and chromatographic separation of the residue on silica gel led to the isolation of unreacted 3, a mixture of the $1: 1$ adducts 4 and 5 (37.3 and 24.9%, respectively), and the $2: 1$ adduct $6(9.3 \%)$. Fractional recrystallization of the $1: 1$ adduct mixture afforded pure fractions of 4 and 5 (see Scheme I).

The structures of the $1: 1$ adducts are assigned on the basis of chemical and spectral data. Ozonolysis of 0.095 mmol of 4 in 1.0 ml of dichloromethane and 0.2 ml of pyridine produced 0.090 mmol of benzaldehyde and 0.088 mmol of acetone (by glpc analysis) indicating the presence of a benzylidene and an isopropylidene function. The nmr spectrum is consistent with the gross structure represented in 4 . The $-\mathrm{CH}_{2}$ - of 4 appears as a doublet ($J=1.3 \mathrm{~Hz}$) due to long-range coupling with the benzylidene vinyl hydrogen. The appearance of the $-\mathrm{CH}_{2}$ - as the X_{2} portion of an AX_{2} system implies that the structure is planar about the bridgehead nitrogens and is consistent with previous observations that the urazol rings in adducts derived from PTAD are planar. ${ }^{14.15}$

The stereochemistry about the benzylidene function in 4 was indicated by the nmr spectrum which displays a very high-field methyl resonance at $\delta 1.37$ for one of the methyls of the isopropylidene function. This high-field resonance is assigned to the methyl residing on the "inside" of the diene chromophore which suffers long-range shielding by the phenyl group. The phenyl group must be twisted perpendicular to the general plane of the diene system owing to severe steric interactions arising between the inside phenyl and methyl functions as required in a planar conformation. Confirmation of the stereochemical assignment was provided by the quantitative isomerization of 4 to 8 by iodine in benzene at 110° and by comparison of the spectral properties of 4 and 8 . The high-field methyl resonance of 4 appears at much lower field in 8 ($\delta 2.13$). The uv
(14) A. B. Evnin, D. R. Arnold, L. A. Karnishky, and E. Strom. ibid., 92, 6218 (1970).
(15) cis- and trans-piperylene react with PTAD to give identical adducts which is consistent with a planar structure about the nitrogen atoms. The nmr spectra of the adducts of cis- or trans-piperylene with PTAD determined at various temperatures are not consistent with a rapidly interconverting set of nonplanar structures.

Scheme II

or
$\downarrow^{\text {PTAD }}$
$+$

methyl reside in nearly the same plane (the tetracyclic framework of the $2: 1$ adducts is nearly planar), and that the steric interaction between the proximate phenyl and methyl forces the phenyl into a twisted conformation perpendicular to the general plane of the molecule such that the methyl resides over the face of the phenyl ring. Such is not indicated to occur in the trans structures 14 and 16.

Assignment of structure $\mathbf{1 1}$ for the other $1: 1$ adduct is based on a comparison of its nmr spectrum with that of $\mathbf{1 3}$. The isomerization of $\mathbf{1 1}$ to $\mathbf{1 3}$ could not be achieved by refluxing with iodine in benzene. Irradiation of 11 in the presence of benzophenone in benzene afforded an inseparable 70:30 mixture of $\mathbf{1 3}$ and $\mathbf{1 1 .}$ Unfortunately, this product distribution does not represent a true ground-state thermodynamic equilibrium and thus cannot be used to assign structures on that basis. The ethylidene vinyl hydrogen of 13 , however, appears at lower field than in $\mathbf{1 1}$ owing to long-range shielding by the isopropylidene function. ${ }^{16}$

In contrast to the reactions of $\mathbf{1 0}$ and $\mathbf{1 2}$ with PTAD which gave identical $2: 1$ adducts, the stereoisomeric adducts $\mathbf{1 1}$ and $\mathbf{1 3}$ reacted with PTAD to produce different $2: 1$ adducts. The stereochemical relationship between the methyl and phenyl is assigned cis and trans in 15 and 16 , respectively, based on the long-range shielding of the phenyl on the methyl resonance (vide infra) and consideration of the stereochemistry of $\left({ }_{\pi} 4+\right.$ ${ }_{\pi} 2$) cycloadditions in which the PTAD approaches the diene chromophore from the side opposite the phenyl group.
cis- and trans-2,3-Dimethylisobutenylidenecyclopropane (17a and 17b) with PTAD. The reactions of 17a and 17 b with PTAD produced only a single $1: 1$ adduct

[^0]18. The assignment of the stereochemistry about the ethylidene function is based on a comparison of the chemical shifts of the ethylidene vinyl hydrogens of 18 and 19, the latter obtained by benzophenone-sensitized photoisomerization of 18 , the vinyl hydrogen resonance of 19 appearing at $\delta 5.77$ compared to $\delta 5.59$ in 18 .
Adduct 18 slowly reacts further with PTAD to give a $2: 1$ adduct assigned structure 20 (see Scheme III).

Scheme III

17a
or

17b

18
$\stackrel{h \nu}{\rightleftharpoons}$

19

20

The assignment of the stereochemistry of 20 is based on the assumption that PTAD approaches 18 from the side opposite the methyl attached to the sp^{3} carbon resulting in a cis relationship between the two methyls in 20. The nmr spectrum of $\mathbf{2 0}$ is also consistent with this assignment. The doublet representing the methyl attached to the six-membered ring of 20 appears at the same position as in the $2: 1$ adduct 25 in which the methyl must be cis to one of the methyls attached to the five-membered ring.

2,2,3-Trimethylisobutenylidenecyclopropane (22) with PTAD. The reaction of 22 with PTAD produces a 65:35 mixture of the $1: 1$ adducts 23 and 24 (by nmr analysis). Fractional recrystallization of the mixture gave a pure fraction of 23 ; however, 24 could not be obtained in pure form using physical separation techniques. The structure of $\mathbf{2 3}$ was assigned on the basis of chemical and nmr spectral properties. Quantitative ozonolysis of $\mathbf{2 3}$ produced acetaldehyde and acetone indicating the presence of ethylidene and isopropylidene functions. The stereochemistry about the ethylidene function was assigned by comparison of the chemical shift of the ethylidene vinyl hydrogen of 23 ($\delta 5.55$) with that in $\mathbf{1 8}$ ($\delta 5.59$). The chemical shift of the ethylidene methyl function in the two compounds is also very similar ($\delta 1.70$ in 23 compared to $\delta 1.73$ in 18). Attempted benzophenone-sensitized photoisomerization of 23 met with failure. Further reaction of 23 with PTAD led to the formation of 25 (see Scheme IV).

Treatment of the mixture of 23 and 24 with PTAD

Scheme IV

indicated that 23 rapidly reacts with PTAD but that 24 reacts only very slowly (the product does not appear to be a $(4+2)$ cycloaddition product). Reaction of 23 in the mixture of 23 and 24 followed by chromatographic separation of the $2: 1$ adduct $\mathbf{2 5}$ from $\mathbf{2 4}$ led to the isolation of pure 24. The lack of reactivity of 24 with PTAD is consistent with the observed lack of reactivity of $\mathbf{2 7}$ with PTAD (vide infra).

2,2,3,3-Tetramethylisobutenylidenecyclopropane (26) with PTAD. Alkenylidenecyclopropane 26 reacts somewhat more slowly with PTAD to produce 27 (Scheme V). The structure of 26 is indicated by the
Scheme V

nmr spectrum which displays singlets at $\delta 1.76(12 \mathrm{H})$, $1.87(3 \mathrm{H})$, and $2.13(3 \mathrm{H})$, with the aromatic hydrogens appearing as a multiplet at $\delta 7.35$. Adduct 27 reacts very slowly with PTAD but not to form a $(4+2)$ cycloaddition product.

Discussion

A careful inspection of the results presented in the foregoing section reveals two interesting and important stereochemical facts. The reactions of 2-phenyl- (3) and the cis- and trans-2,3-disubstituted isobutenylidenecyclopropanes, 9 a and 9 b , and 17 a and 17 b with PTAD produced $1: 1$ adducts which possess only the less thermodynamically stable Z stereochemistry about the 7 -alkylidene functions. Secondly, both the cisand trans-2-methyl-3-phenyl- (9a and 9b) and the cisand trans-2,3-dimethylisobutenylidenecyclopropanes (17a and 17b) reacted to give identical $1: 1$ adducts. Based on these data, we previously suggested that the reactions of 1 with PTAD proceed via concerted re-

$\stackrel{29}{\sim}$

(endo)

(endo)

(exo)

32

(exo)

(endo)

Figure 1. "Six-electron" transition states for cycloaddition reactions of alkenylidene- and methylenecyclopropanes.
action pathways ${ }^{10}$ in which the stereochemistry about the 7 -alkylidene function is governed by orbital overlap developed in the transition states for the cycloaddition reactions. ${ }^{11,18}$ We now wish to present a more detailed description of the stereochemical aspects of these reactions, as well as the ground and transition state orbital interactions of 1 in reaction with PTAD which
(18) Alternate pathways proceeding via dipolar or diradical intermediates are not considered likely based on the following considerations. Reactions of the trans-2,3-disubstituted alkenylidenecyclopropanes with chlorosulfonylisocyanate produce cyclopropane ringopened intermediates which collapse to produce a mixture of adducts

stereoisomeric about the alkylidene function. ${ }^{17}$ The reaction of $9 \mathbf{b}$ or 17b with PTAD via dipolar intermediate mechanisms would similarly be expected to produce mixtures of $10,12,11$, and 13 , and 18 and 19, respectively. Reactions involving the formation of diradical intermediates, either cyclopropyl or cyclopropylcarbinyl, are not expected to lead to cyclopropane ring-opened products.

Figure 2. "Eight-electron" processes for the cycloaddition reactions of alkenylidenecyclopropanes.
afford a high degree of reactivity of 1 with PTAD relative to methylenecyclopropanes.

The concerted cycloaddition of an alkenylidenecyclopropane with a dienophile can occur via two distinctly different modes of reaction. One mode involves interaction of the dienophile with the π electrons of the $\mathrm{C}_{1}-\mathrm{C}_{4}$ double bond and the σ electrons of the strained $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond (designated as a "six-electron" process). The second mode of reaction involves the π electrons of both the $\mathrm{C}_{1}-\mathrm{C}_{4}$ and $\mathrm{C}_{4}-\mathrm{C}_{5}$ double bonds and the σ electrons of the strained $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond (designated as an "eight-electron" process). For the reaction of the alkenylidenecyclopropane 28 with the hypothetical

dienophile A, there are four stereochemically different processes for each mode of reaction (illustrated in Figures 1 and 2). These stereochemically different processes produce different combinations of stereochemical features at (1) the 3 -alkylidene function, (2) the 4 -alkylidene function, (3) at C_{5}, and (4) at the X atoms relative to C_{5}.

Four stereochemically different, thermally allowed
concerted "six-electron" processes are possible, i.e., those proceeding via aromatic Hückel transition states. ${ }^{19}$ In the representations of these transition states in Figure 1 the interacting orbitals in the transition states are connected by lines to aid in visualizing the various processes. (The nonthermally allowed concerted, antiaromatic transition state processes are not shown).

Approach of the dienophile to the side of 28 opposite the R functions at C_{2} and C_{3} in an "endo" configuration (the Y functions of the dienophile being directed toward 28) with inversion occurring at C_{3} produces transition state 29 giving the (endo) product (process 1). ${ }^{21}$ Reaction via an "exo" configuration (Y functions directed away from 28) results in the formation of a product stereoisomeric at X_{1} and X_{2} [the (exo) product in process l]. ${ }^{22}$ In these transition states the stereochemistry about the C_{3} alkylidene function is determined solely by the direction of approach of the dienophile, in this process R_{2} becomes syn to X_{2}. The direction of rotation of the plane of the $\mathrm{H}-\mathrm{C}_{2}-\mathrm{R}$ moiety is dictated by the requirement for an "aromatic" transition state and results in the formation of the Z isomer.

In process 2 , the dienophile again approaches the side of 28 opposite the R functions; in this process, however, retention of stereochemistry at C_{3} is pictured as occurring giving the (endo and exo) products via transition state 30 . Processes 3 and 4 picture transition states derived by the approach of the dienophile cis to the R functions.

A more careful consideration of the steric requirements for orbital overlap in transition states 29-32 immediately indicates that none of these processes should be particularly favorable. The $\mathrm{C}_{4} \mathrm{p}$ orbital of the $\mathrm{C}_{1}-\mathrm{C}_{4}$ double bond is orthogonal to the plane of the cyclopropane ring and the axis of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond which is being broken. In the C_{3} inversion processes the p orbitals of the dienophile must span the orthogonal $\mathrm{C}_{4} \mathrm{p}$ orbital and the orbital on C_{3}, a feat which does not allow for effective orbital overlap early along the reaction coordinate. Similarly, overlap between the orbitals on C_{2} with the $\mathrm{C}_{1} \mathrm{p}$ orbital cannot occur until considerable rotation of the $\mathrm{H}-\mathrm{C}_{2}-\mathrm{R}$ plane has occurred.

The initial orbital overlap derived in the retention
(19) Aromatic Huickel transition states are those containing ($4 n+2$) electrons and zero, or an even number, of antibonding interactions ($-\beta^{\prime} \mathrm{s}$). Transition states containing $4 n$ electrons are considered aromatic (thermally allowed) when an odd number of $-\beta$'s (Möbius systems) are present. ${ }^{20}$
(20) H. E. Zimmerman, Accounts Chem. Res., 4, 272 (1971).
(21) In all of the processes illustrated in Figures 1 and 2, the addition across the π-electron system of the dienophile is depicted as occurring in a suprafacial manner. Antarafacial additions are in general less favorable than suprafacial additions owing to the more stringent steric demands in the antarafacial transition states.
(22) In the reactions of alkenylidenecyclopropanes with PTAD stereoisomerism about the bridge nitrogens in the adducts is not present due to the planar structure of the urazole ring, ${ }^{14}$ and, unfortunately, no information is thus available concerning the "endo-exo" or "synanti" (vide infra) nature of the transition states. Attempted reactions of alkenylidenecyclopropanes with dienophiles capable of producing adducts possessing stereochemistry at the bridgehead positions (e.g., maleic anhydride) were unsuccessful. Attempted reactions at temperatures $>150^{\circ}$ resulted in isomerization of the alkenylidenecyclopropanes to bismethylenecyclopropanes ${ }^{23}$ thus precluding the use of high-temperature reaction conditions.
(23) M. E. Hendrick, J. A. Hardie, and M. Jones, Jr., J. Org. Chem., 36, 3061 (1971): D. R. Paulson, J. K. Crandall, and C. A. Bunnell, ibid., 35, 3708 (1970): R. Bloch, P. LePerchec, and J.-M. Conia, Angew: Chem., 82, 910 (1970).
processes appears even less favorable, the π system of the dienophile having to penetrate past the C_{1} p orbital.

The stereochemical processes of the "eight-electron" mode of reaction are illustrated in Figure 2. ${ }^{19}$ In the C_{3} inversion processes the dienophile approaches the "edge" of the alkenylidenecyclopropane with the Y functions of the dienophile either "syn" or "anti" with respect to the R groups attached to C_{2} and $\mathrm{C}_{3} .{ }^{22}$ In these processes the p orbitals of the dienophile can readily initiate bonding with the p orbital on C_{4} of the $\mathrm{C}_{4}-\mathrm{C}_{5}$ double bond and the orbital on C_{3}, all of the orbitals residing in a common plane. In contrast, it is not possible to initiate bonding between the dienophile and the requisite orbitals of the alkenylidenecyclopropane in the retention processes 7 and 8. Comparison of the steric requirements in the "six." and "eight-electron" inversion processes leads one to the prediction that the "eight-electron" mode of reaction should be more favorable. We will return to this point later in this article.

In the "eight-electron" mode of reaction the direction of rotation of the $=\mathrm{CR}_{1} \mathrm{R}_{2}$ function is not dependent on the direction of approach of the dienophile to the alkenylidenecyclopropane but is intimately connected with the stereochemistry of attack at C_{3} and the direction of rotation of the plane of the $\mathrm{H}-\mathrm{C}_{2}-\mathrm{R}$ moiety. Of the two inversion processes, process 5 is expected to be favored over process 6 in early transition states owing to the steric interference to inward rotation of $\mathrm{H}-\mathrm{C}_{2}-\mathrm{R}$ generated between R and the cis group on C_{3}. In contrast, process 6 is expected to be more favorable if the transition state occurs late along the reaction coordinate due to the very severe steric interference between R and R_{1}, both of which reside on the "inside" of the diene chromophore; the observations that in general the reactions of the alkenylidenecyclopropanes occur very rapidly, and only adducts containing the Z stereochemistry about the 7 -alkylidene are formed, indicate that the cycloaddition reactions occur via the inversion process $5 .{ }^{24}$

In the foregoing discussion, we have centered our attention only on the stereochemical aspects of the reaction with a cis-2,3-disubstituted alkenylidenecyclopropane. In cycloaddition reactions involving trans-2,3-disubstituted alkenylidenecyclopropanes, the R in the $\mathrm{H}-\mathrm{C}_{2}-\mathrm{R}$ plane will rotate outward (the direction of least steric interference) to produce the (Z)-7-alkylidene function. Attack at C_{3} is still favored to occur with inversion (process 5). Thus, the only difference between reactions of the cis and trans compounds will be the stereochemistry at C_{8} in the $1: 1$ adducts.

The foregoing approach provides an excellent basis for the discussion of the stereochemical aspects of the cycloaddition reactions; it does not, however, provide a completely satisfactory rationale for the high degree of reactivity of the alkenylidenecyclopropanes with PTAD or the differences in reactivity and mode of reaction between alkenylidene- and methylenecyclopropanes with PTAD. The differences in reactivity and mode of reaction become more apparent using an alternate MO description of bonding in the alkenyli-
(24) The results reported in this article provide stereochemical information involved in the formation of the 7 -alkylidene function. Studies directed toward determination of the stereochemistry of reaction at C_{3} and the direction of rotation of the $=\mathrm{CR}_{1} \mathrm{R}_{2}$ function have been initiated.

Figure 3. Walsh and π orbitals of an alkenylidenecyclopropane.
dene- and methylenecyclopropanes and in the transition states for cycloaddition. This MO description of an alkenylidenecyclopropane invokes an interaction between the $\mathrm{C}_{4}-\mathrm{C}_{5} \pi$ system and the orbitals of the cyclopropane ring. In this approach it is convenient to use the MO description of cyclopropane proposed by Walsh in which the carbon atoms are considered to be $\mathrm{sp}^{2} \mathrm{p}$ hybridized. ${ }^{25}$ The hydrogens are bonded to two of the sp^{2} hybrid orbitals, the third sp^{2} orbital of each carbon being directed toward the center of the three-membered ring forming the lowest energy "Walsh" orbital. The remaining p orbitals combine to form a degenerate pair of orbitals, the maximum overlap of which occurs "outside" the internuclear axes.

Application of the Walsh model to alkenylidene- and methylenecyclopropanes requires a slight modification, C_{1} now being sppp hybridized. The "Walsh" orbitals of the three-membered ring in the alkenylidene- and methylenecyclopropanes are constructed as illustrated in the left-hand portion of Figure 3.26 Interaction of the antisymmetric component of the originally degenerate pair of bonding orbitals with the $\mathrm{C}_{4}-\mathrm{C}_{5} \pi^{*}$ in an alkenylidenecyclopropane, ${ }^{27}$ and the originally nondegenerate unoccupied orbital with the $\mathrm{C}_{4}-\mathrm{C}_{5} \pi \mathrm{MO}$, produces two new " π-type" MO's embracing the $\mathrm{C}_{4}{ }^{-}$ C_{5} double bond and the cyclopropane ring system as

[^1]

Figure 4. " π-Type" MO's of an alkenylidenecyclopropane.
illustrated in Figure 4. The highest occupied "combined Walsh", orbital of the alkenylidenecyclopropane possesses the correct symmetry for interaction with the unoccupied orbital of the dienophile (π^{*} in Figure 5) in a concerted cycloaddition reaction. Furthermore, the substantial antibonding character between C_{2} and C_{3} in the highest occupied Walsh orbital of the alkenylidenecyclopropane participating in the frontier orbital should greatly facilitate cleavage of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond in the transition state.

The qualitative MO description developed in the foregoing paragraphs is quantitatively borne out by the results of extended Hückel (EH) calculations employing nonorthogonal basis sets. ${ }^{30}$ The highest occupied orbitals of cyclopropane are a set of degenerate orbitals of A_{1} and B_{1} symmetry which correspond to the symmetric and antisymmetric Walsh bonding orbitals (see Figure 5). The B_{1} orbital of cyclopropane correlates with the two B_{1} orbitals of alkenylidenecyclopropane (Figure 5) which correspond to those developed in the qualitative approach developed earlier in this article. The highest energy B_{1} orbital is the highest occupied orbital of alkenylidenecyclopropane and has the appropriate symmetry for interaction with the dienophile (vide infra). In contrast, the A_{1} Walsh orbital of cyclopropane is not affected by the introduction of the sppp hybridized C_{1} and the $C_{4}-C_{5} \pi$ system as evidenced by inconsequential changes in coefficients and energy in going from the A_{1} orbital of cyclopropane to the corresponding A_{1} orbital of the alkenylidenecyclopropane.

The EH calculations provide a number of additional interesting insights worthy of mention. First, in the

[^2]θ_{1}

Figure 5. Results of EH calculations for cyclopropane and ethenylidenecyclopropane.
alkenylidenecyclopropane considerable electron density has shifted from the cyclopropane moiety to the $\mathrm{C}_{4}-\mathrm{C}_{5}$ π system. This is consistent with the observed greater inductive donation afforded by cyclopropane relative to a double bond as manifest in the greater rate of solvolysis of cyclopropylcarbinyl relative to allyl derivatives ${ }^{31}$ and the high preference for electrophilic attack at C_{4} and C_{5} relative to C_{1} in alkenylidenecyclopropanes. ${ }^{32}$ Second, the antibonding character between C_{2} and C_{3} in the two B_{1} Walsh-type orbitals of alkenylidenecyclopropane is considerably less than in the B_{1} Walsh orbital of cyclopropane. This should be reflected in a strengthening (shortening) of the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond in alkenylidenecyclopropane relative to a $\mathrm{C}-\mathrm{C}$ bond length in cyclopropane. ${ }^{33,34}$

A similar approach to the MO description for the cycloaddition of methylenecyclopropane immediately reveals that there does not exist suitable methylenecyclopropane MO's for interaction with a dienophile in the transition state. This is completely consistent with the tremendously lower reactivity and different mode of reaction of cis- and trans-2,3-dimethylmethylenecyclopropane with PTAD.

Formation of the $2: 1$ Adducts. The rates of reactions of the $1: 1$ adducts with PTAD to form the $2: 1$ adducts were observed to be quite sensitive to the degree of substitution at the 7 -alkylidene function and to the stereochemistry about the 7 -alkylidene double bond. The reactivity of the $1: 1$ adducts markedly decreases

[^3]with increasing substitution at the 7 -alkylidene function, the 7 -isopropylidene derivatives 34 and 27 not undergoing reaction with PTAD despite the extremely reactive nature of PTAD. The reactivity of the E isomers $8,12,13$, and 19 was significantly greater (up to a factor of 10^{2}) than of the corresponding Z isomers 4, 10, 11, and 18 . Furthermore, an interesting contrast is encountered in the reactions of the stereoisomeric $1: 1$ adducts $\mathbf{1 0}$ and 12 , which react with PTAD to produce the same 2:1 adduct, compared to the stereoisomeric adducts 11 and 13 , and 18 and 19, each of which produces a unique $2: 1$ adduct.

These observations are readily rationalized if one considers the distortion of the diene chromophore that results when substituents are forced to reside in the "inside" of the diene system. The extreme steric crowding of functions constrained to the "inside" of the diene chromophore is reflected in the quantitative isomerizations of the Z isomers $\mathbf{4}$ and 10 to the E isomers 8 and 12, respectively. The steric repulsion between the "inside" groups forces a twisting of the 6isopropylidene and (Z)-7-alkylidene functions such that the conjugative interaction between the double bonds is reduced, as well as forcing the groups attached to the terminal carbons of the diene into sterically prominent positions above and below the diene chromophore. Both of these effects result in a reduction in the rate of cycloaddition with PTAD.

In the cycloaddition reactions of 11 and $\mathbf{1 3}$, the PTAD approaches the diene from the side opposite the phenyl group attached to C_{8} to produce the $2: 1$ adducts $\mathbf{1 5}$ and 16, respectively. The assignment of the stereochemistry of 15 and 16 rests on the observed long-range shielding of the methyl group cis to the phenyl in 15 (vide infra). The reactions of 18 and 19 with PTAD are also consistent with attack by PTAD at the side opposite the C_{8} methyl, although here the nmr evidence is not as definitive in support of the assigned stereochemistry as in the case of $\mathbf{1 5}$ and 16.

The reactions of 10 and 12 with PTAD, however,
both produce the same $2: 1$ adduct 14 . The assignment of the trans relationship between the methyl and phenyl in $\mathbf{1 4}$ appears to be soundly based. The reaction of $\mathbf{1 0}$ to produce 14 must occur by attack of PTAD on the same side of the diene chromophore as the C_{8} methyl. The benzylidene function must be twisted below the plane of the diene relative to the C_{8} methyl such that the phenyl group offers more steric resistance to attack by the PTAD than does the C_{8} methyl. In 12 the benzylidene function is able to assume a planar conformation relative to the diene, the C_{8} methyl now offering the greater steric inhibition to attack by PTAD on the diene chromophore as observed with the other $1: 1$ adducts.

Experimental Section

Preparation of Substituted Alkenylidenecyclopropanes. The procedure of Hartzler ${ }^{36}$ was used to prepare the substituted alkenylidenecyclopropanes by addition of 3,3-dimethylallenecarbene to the appropriate alkenes. Alkenylidenecyclopropanes not previously reported are the following.
cis-2-Methyl-3-phenylisobutenylidenecyclopropane (9a): bp $80-$ 81° (0.03 mm); ir (capillary film) $2035 \mathrm{~cm}^{-1}$ (allene); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right) \delta$ $0.91\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.89(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $2.0\left(\mathrm{dq}, J=6.0\right.$ and $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CHCH}_{3}\right), 3.08(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H},>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, and $7.17(\mathrm{~s}, 5 \mathrm{H}$, aromatic H$)$.
trans-2-Methyl-3-phenylisobutenylidenecyclopropane (9b): bp $73-75^{\circ}$ (0.03 mm); ir (capillary film) $2030 \mathrm{~cm}^{-1}$ (allene); $\mathrm{nmr}\left(\mathrm{CCl}_{4}\right)$ $\delta 1.34\left(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.71\left(\mathrm{~m}, 1 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.77$ $\left(\mathrm{s}, 6 \mathrm{H},=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.41\left(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$), and $7.10(\mathrm{~s}, 5 \mathrm{H}$, aromatic H$)$.
4-Phenyl-1, 2,4-triazoline-3,5-dione (PTAD). 4-Phenyl-1,2,4-tri-azolidine-3,5-dione ${ }^{37}(17.5 \mathrm{~g})$ was dissolved in 60 ml of dichloromethane and cooled to -70° in a Dry Ice-acetone bath and 12.1 g of freshly prepared tert-butyl hypochlorite was added over the course of 30 min . The reaction mixture was allowed to warm to room temperature and the majority of the solvent was removed under vacuum. The residue was filtered and washed with two $20-\mathrm{ml}$ portions of cold dichloromethane. The PTAD was sublimed under vacuum prior to use.
Reaction of Substituted Alkenylidenecyclopropanes with PTAD. To a solution of the alkenylidenecyclopropane in dichloromethane $(0.4 \mathrm{M})$ at 0° was added 1 molar equiv of PTAD in dichloromethane (0.4 M). After discharge of the red color of the PTAD, the solvent was removed under reduced pressure and the product mixture was separated by column chromatography on silica gel and/or fractional crystallization. The $1: 1$ adducts elute with $2: 1$ benzene-methylene chloride while the $2: 1$ adducts elute with chloroform. (Identical procedures were employed in the reactions of the $1: 1$ adducts with PTAD.)

Ozonolysis of Adducts. A weighed portion of the 1:1 adduct $(\sim 0.1 \mathrm{mmol})$ was dissolved in 1.0 ml of dichloromethane and 0.2 ml of pyridine. The solution was placed in a small bubbler tube, cooled to -70° in a Dry Ice-acetone bath, and was treated with ozone until no further consumption of ozone was indicated by use of a potassium iodide-starch indicator solution. The ozonolysis reaction mixture was allowed to warm to room temperature. A weighed portion of toluene was added (as an internal standard for glpc analysis) and the mixture was analyzed directly by glpe on a 10 ft Carbowax 20 M on Chromosorb P column.

2-Phenylisobutenylidenecyclopropane (3) with PTAD. Adduct 4: $\mathrm{mp} 174.0-174.5^{\circ}$ (ether); uv $\max (95 \%$ ethanol) $222 \mathrm{~nm}(\log \epsilon 4.31)$ and 268 (3.97); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 1.37$ (s, 3 H , "inside" CH_{3} of $=\mathrm{C}$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H}\right.$, "outside" CH_{3} of $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.42(\mathrm{~d}, J=1.3$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.53\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},=\mathrm{C} H\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$), and $7.40(\mathrm{~m}, 10 \mathrm{H}$, aromatic H); mass spectrum m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} 345.148$, found 345.151 .

Adduct 5: mp 126.0-126.5 ${ }^{\circ}$ (ether); uv \max (95% ethanol) $222 \mathrm{~nm}(\log \epsilon 4.31)$ and 265 (3.21); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 1.99(\mathrm{~s}, 3 \mathrm{H}$,
 $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 5.31,5.43,5.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}\right.$ each, vinyl H and $>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), and $7.40(\mathrm{~m}, 10 \mathrm{H}$, aromatic H$)$; mass spectrum m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} 345.148$, found 345.151.

[^4]2:1 Adduct 6: mp 136-137 ${ }^{\circ}$ (ethyl acetate); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.90$ and $2.03\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each, geminal $\left.\mathrm{CH}_{3} \mathrm{~s}\right)$, 3.72 and 4.24 (AB doublets, $J=16 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 5.95 (br s, $1 \mathrm{H},-\mathrm{CH}-$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), and $7.40(\mathrm{~m}, 15 \mathrm{H}$, aromatic H$)$; mass spectrum m / e calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} 520.184$, found 520.186 .
2:1 Adduct 7: mp 148-149 ${ }^{\circ}$ (ethyl acetate); nmr (CDCl_{3}) $\delta 1.87$ and $2.29\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each, geminal $-\mathrm{CH}_{3}$'s), 4.15 and $4.65(\mathrm{AB}$ doublets, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$ each, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 5.53 (br s, $1 \mathrm{H},>\mathrm{CH}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), and $7.40(\mathrm{~m}, 15 \mathrm{H}$, aromatic H$)$; mass spectrum m/e calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} 520.184$, found 520.187 .

Iodine-Catalyzed Isomerization of 4. A solution of 38.5 mg of 4 and 1 mg of iodine in 0.30 ml of deuteriochloroform was sealed in an nmr tube and was heated in an oil bath at 110° for 10 hr . The nmr spectrum of the sample indicated that the isomerization to 5 was complete and quantitative. The solvent was removed and the product was purifed by recrystallization: mp $145-146^{\circ}$ (ether); uv max (95% ethanol) $222.5 \mathrm{~nm}(\log \epsilon 4.31$) and 274.0 (4.30); nmr $\left(\mathrm{CDCl}_{3}\right) \delta 2.13\left(\mathrm{~s}, 3 \mathrm{H}\right.$, "inside" -CH of $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.20(\mathrm{~s}, 3 \mathrm{H}$, "outside" $-\mathrm{CH}_{3}$ of $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.63\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}\right)$, 6.77 (br s, 1 H , vinyl H), and $7.40(\mathrm{~m}, 10 \mathrm{H}$, aromatic H); mass spectrum m / e calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} 345.148$, found 345.143 .
cis- and trans-2-Methyl-3-phenylisobutenylidenecyclopropane (9a and 9b) with PTAD. Adduct 10: mp 151-152 (ether); uv max (95% ethanol) $222 \mathrm{~nm}(\log \in 4.35)$ and 268 (3.97); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta$ 1.39 (s, 3 H , "inside"' $-\mathrm{CH}_{3}$), $1.55\left(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right)$, 2.13 (s, 3 H , "outside" $\left.-\mathrm{CH}_{3}\right), 4.83\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CHCH}_{3}\right)$, 6.51 (br s, 1 H , vinyl H), and $7.40(\mathrm{~m}, 5 \mathrm{H}$, aromatic H); mass spectrum m / e calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} 359.164$, found 359.161 .

Adduct 11: $\operatorname{mp} 131-132^{\circ}$ (ether); uv $\max (95 \%$ ethanol) 222 nm ($\log \epsilon 4.31$) and 261 (3.27); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.80(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\xlongequal{=} \mathrm{CHCH})_{3}\right), 1.83$ and $2.13\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each,$\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.80(\mathrm{q}, J=7$ $\left.\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{3}\right), 5.81(\mathrm{br} \mathrm{s}, 1 \mathrm{H},>\mathrm{CH})$, and $7.40(\mathrm{~m}, 10 \mathrm{H}$, aromatic H); mass spectrum m / e caled for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} 359.164$, found 359.162 .
2:1 Adduct 14: mp 154-155 ${ }^{\circ}$ (ethyl acetate); nmr (CDCl_{3}) $\delta 1.66\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.95$ and $2.29(\mathrm{~s}, 3 \mathrm{H}$ each, geminal $-\mathrm{CH}_{3}{ }^{\prime} \mathrm{s}$), $4.67\left(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CHCH}_{3}\right.$), 5.55 (br s, $1 \mathrm{H},>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), and $7.40(\mathrm{~m}, 15 \mathrm{H}$, aromatic H$)$.

2:1 Adduct 15: mp 134-135 ${ }^{\circ}$ (ethyl acetate); nmr $\left(\mathrm{CDCl}_{3}\right)$ $\left.\delta 0.75(\mathrm{~d}, J=6.0) \mathrm{Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.87$ and $2.33(\mathrm{~s}, 3 \mathrm{H}$ each, geminal CH_{3} 's), $4.67\left(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CH}-\mathrm{CH}_{3}\right.$), 5.95 (br s. $1 \mathrm{H},>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), and $7.40(\mathrm{~m}, 15 \mathrm{H}$, aromatic H$)$.

Iodine-Catalyzed Isomerization of $\mathbf{1 0}$. Adduct 10 was quantitatively isomerized to 12 by the procedure outlined above: $\mathrm{mp} 136.5-$ 137.5° (ethyl acetate); uv max (95% ethanol) $222 \mathrm{~nm}(\log \epsilon 4.35$) and $273(4.12) ; \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.60\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right)$, 2.13 and $2.23\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each, $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.17(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.>\mathrm{CHCH} \mathrm{CH}_{3}\right), 6.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, vinyl H$)$, and $7.40(\mathrm{~m}, 10 \mathrm{H}$, aromatic H$)$; mass spectrum m/e calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} 359.164$, found 359.157.

Photoisomerization of 11 . A solution of 50 mg of 11 and 0.1 mmol of benzophenone in 10 ml of benzene was purged with nitrogen and irradiated in a Pyrex vessel with a high-pressure mercury arc lamp. Samples were periodically removed and analyzed by nmr. A photostationary state equilibrium of 13 and 11 (70:30 ratio) was achieved in 3 hr irradiation time. The nmr of the photoisomer $13\left(\mathrm{CDCl}_{3}\right)$ displays peaks at $\delta 1.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.=\mathrm{CHCH}_{3}\right), 2.10$ and $2.15\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each, $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 5.94(\mathrm{q}, J=7.0$ $\left.\mathrm{Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{3}\right), 5.84\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H},>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right.$), and $7.40(\mathrm{~m}, 10$ H , aromatic H).

2:1 Adduct 16 (derived as a mixture with 15 from the reaction of the $70: 30$ mixture of 13 and 11 with PTAD as described earlier): $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.74\left(\mathrm{~d}, J=6.4,3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 2.02$ and $2.13(\mathrm{~s}, 3$ H each, geminal $\mathrm{CH}_{3}{ }^{\prime} \mathrm{s}$), $4.23\left(\mathrm{q}, J=6.4 \mathrm{~Hz},>\mathrm{CHCH}_{3}\right), 5.86(\mathrm{br} \mathrm{s}$, $1 \mathrm{H},>\mathrm{CH}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), and 7.43 ($\mathrm{m}, 15 \mathrm{H}$, aromatic H).
cis- and trans-2,3-Dimethylisobutenylidenecyclopropane (17a and 17b) with PTAD. Adduct 18: mp 126-127 ${ }^{\circ}$ (ether-hexane); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.43\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.73(\mathrm{~d}, J=7.0$ $\left.\mathrm{Hz}, 3 \mathrm{H},=\mathrm{CHCH}_{3}\right), 1.87$ and $2.15\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each,$\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.64$ $\left(\mathrm{q}, J=6.5 \mathrm{~Hz},>\mathrm{CHCH}_{3}\right), 5.59\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{3}\right)$, and $7.32\left(\mathrm{~m}, 5 \mathrm{H}\right.$, aromatic H); mass spectrum m / e calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ 297.148, found 297.150 .

2:1 Adduct 20: mp 160-161 ${ }^{\circ}$ (ethyl acetate); nmr (CDCl_{3}) $\delta 1.47$ and $1.63\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$ each, $>\mathrm{CHCH}_{3}$'s), 1.77 and 2.20 ($\mathrm{s}, 3 \mathrm{H}$ each, geminal $-\mathrm{C}_{3}$'s), 4.64 and 5.12 ($\mathrm{q}, J=6.4,1 \mathrm{H}$ each, $>\mathrm{CHCH}_{3}$), and $7.40(\mathrm{~m}, 10 \mathrm{H}$, aromatic H$)$; mass spectrum m / e calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{4} 472.197$, found 472.202 .

Photoisomerization of 18. A sample of 18 was irradiated for 30 min as described above producing a $70: 30$ mixture of 18 and 19. (More prolonged irradiation led to further undefined reaction.) The $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ of 19 displays peaks at $\delta 1.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$,
$>\mathrm{CHCH}_{3}$), $1.80\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H},=\mathrm{CHCH}_{3}\right), 1.99$ and $2.15(\mathrm{~s}$, 3 H each, $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.91\left(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CHCH}_{3}\right), 5.77$
($\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{3}$), and $7.32(\mathrm{~m}, 5 \mathrm{H}$, aromatic H).
2:1 Adduct 21 (derived as a mixture with 20): $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.50\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.=\mathrm{CHCH}_{3}\right), 1.92$ and $2.11\left(\mathrm{~s}, 3 \mathrm{H}\right.$ each, $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.64(\mathrm{q}, J=6.4$ $\left.\mathrm{Hz} .1 \mathrm{H},>\mathrm{CHCH}_{3}\right), 5.07\left(\mathrm{q}, J=6.4,1 \mathrm{H},=\mathrm{CHCH}_{3}\right)$, and $7.40(\mathrm{~m}$, 5 H , aromatic H).
2,2,3-Trimethylisobutenylidenecyclopropane (22) with PTAD. Adduct 23: mp 127-128 ${ }^{\circ}$ (ether); nmr (CDCl_{3}) $1.60(\mathrm{~s}, 6 \mathrm{H}$), $\left.>\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.70\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H},=\mathrm{CHCH}_{3}\right), 1.88$ and 2.17 (s, 3 H each, $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $5.55\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CHCH}_{3}\right)$, and $7.35(\mathrm{~m}, 5 \mathrm{H}$. aromatic H$)$; mass spectrum m / e calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ 311.164, found 311.165.

Adduct 24: $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.38\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right)$, 1.75 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$), 1.80 ($\mathrm{s}, 6 \mathrm{H}, 2-\mathrm{CH}_{3}$'s), 2.13 ($\mathrm{s}, 3 \mathrm{H}$, "outside" methyl of $=\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)}, 4.85\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H},>\mathrm{CHCH}_{3}\right)$, and 7.35 ($\mathrm{m}, 5 \mathrm{H}$, aromatic H).
2:1 Adduct 25: 249-250 ${ }^{\circ}$ dec (ethyl acetate); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right)$ $\delta 1.47$ (d, $\left.J=6.2 \mathrm{~Hz}, 3 \mathrm{H},>\mathrm{CHCH}_{3}\right), 1.79\left(\mathrm{~s}, 9 \mathrm{H}, 3-\mathrm{CH}_{3}{ }^{\prime} \mathrm{s}\right), 2.20$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CCH}_{3}$), $4.69\left(\mathrm{q}, J=6.2,1 \mathrm{H},>\mathrm{CHCH}_{3}\right)$, and $7.40(\mathrm{~m}, 10$ H , aromatic H); mass spectrum m / e calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{4} 486.21$, found 486.19.
2,2,3,3-Tetramethylisobutenylidenecyclopropane (26) with PTAD. Adduct 27: mp 184-185 (ether); uv max (95% ethanol) 222 nm ($\log \epsilon 4.31$) and 255 (3.77); $\mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.76\left(\mathrm{~s}, 12 \mathrm{H}, 4-\mathrm{CH}_{3}{ }^{\prime} \mathrm{s}\right)$, 1.87 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$), and $2.13\left(\mathrm{~s}, 3 \mathrm{H}\right.$, "outside" methyl of $\left.=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; mass spectrum m / e calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} 325.179$, found 325.178 .

Conformational Interchange in Acyclic Hydrazines ${ }^{1.2}$

Michael J. S. Dewar*3 and W. Brian Jennings
Contribution from the Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712. Received June 2, 1972

Abstract

Conformational isomerization in some acyclic hydrazines has been studied by dynamic nmr spectroscopy. The barriers to nitrogen inversion in 1,1-dibenzylhydrazine and tetrabenzylhydrazine are (ΔG^{\mp}) $8.0 \mathrm{kcal} / \mathrm{mol}$ at -105°. Larger barriers in hydrazines with E substituents are attributed to hindered rotation about the NN bond. Barriers to rotation about CN bonds were observed in acetylhydrazines and picrylhydrazines.

TThe conformational stereochemistry of hydrazines and the barriers in them to inversion of nitrogen and rotation about the NN bond have recently attracted considerable interest. ${ }^{4.5}$ Studies by microwave spectroscopy and electron diffraction of hydrazine ${ }^{6}$ and some substituted hydrazines ${ }^{7}$ have shown that the preferred configuration is one with the nitrogen lone pairs gauche to one another, and the barriers to inversion of nitrogen in tetrafluorohydrazine ${ }^{8}$ and in cyclic hydrazines such as N, N-dimethyltetrahydropyrazine (1) and N -aminoaziridine ${ }^{9}(2)$ have recently been measured. The barriers in $\mathbf{1}$ and 2 are considerably larger than

1

2
those in the corresponding amines, piperidine ${ }^{10}$ and
(1) This work was supported by the Air Force Office of Scientific Research, through Grant No. F44620-71-C-0119, and by the Robert A. Welch Foundation, through Grant No. F-126.
(2) Part of this work has been published in preliminary form: M. J.
S. Dewar and W. B. Jennings. J. Amer. Chem. Soc., 91, 3655 (1969).
(3) Author to whom correspondence should be addressed.
(4) A. Veillard, Theor. Chim. Acta. 5, 413 (1966): L. Pedersen and K. Morokuma. J. Chem. Phys., 46, 3941 (1967): W. H. Fink, D. C. Pan, and L. C. Allen, ibid.. 47, 895 (1967): A. H. Cowley, W. D. White. and M. C. Damasco. J. Amer. Chem. Soc., 91, 1922 (1969): M. S. Gordon. ibid.. 91, 3122 (1969).
(5) M. J. S. Dewar and M. Shanshal, ibid.. 91, 3654 (1969); J. Chem. Soc. A, 25 (1971).
(6) T. Kasuya and T. Kojima. J. Phys. Soc. Jap., 18, 364 (1963).
(7) D. C. McKean. Spectrochim. Acta. 10, 161 (1957): W. H. Beamer. J. Amer. Chem. Soc., 70, 2979 (1948); L. S. Bartell and H. K. Higginbotham. Inorg. Chem., 4, 1346 (1965).
(8) C. B. Coulburn, F. A. Johnson, and C. Haney, J. Chem. Phys., 43, 4526 (1965).
(9) J. E. Anderson. J. Amer. Chem. Soc., 91, 6374 (1969), and references therein: S. J. Brois. Tetrahedron Lett., 5997 (1968).
aziridine, ${ }^{11.12}$ a result which seems to throw doubt on the claim ${ }^{6}$ that the barrier in hydrazine itself is much less than that in ammonia or methylamine.

When we began the present investigation, no barriers to nitrogen inversion seemed to have been measured by nmr spectroscopy in acyclic hydrazines. Griffith and Roberts ${ }^{13}$ had found that the nmr spectrum of l-benzyl-$1,2,2$-trimethylhydrazine remained unchanged down to -80°, implying that nitrogen inversion was still fast on the nmr time scale at this temperature. ${ }^{14}$

Several groups of workers ${ }^{15}$ had shown that large NN rotational barriers exist in some di- and tetraacylhydrazines, but no barriers had been measured in other types of hydrazines.

Recent work has shown that the barriers to rotation about σ bonds connecting atoms of group V or VI elements with lone pairs of electrons can be quite large and amenable to study by the nmr method. Compounds of this type where torsional barriers have been measured include the $\mathrm{N}-\mathrm{S}$ bond in sulfenamides ${ }^{16}$ and
(10) (a) J. B. Lambert and W. L. Oliver, Jr., ibid., 6187 (1968): for more recent investigations, see (b) J. B. Lambert and W. L. Oliver. Jr., J. Amer. Chem. Soc., 91, 7774 (1969); (c) J. M. Lehn and J. Wagner. Chem. Commun., 414 (1970).
(11) A. T. Bottini and J. D. Roberts, J. Amer. Chem. Soc.. 78, 5126 (1956).
(12) T. J. Bardos, C. Szantay, and C. K. Navada, ibid., 89, 3396 (1967).
(13) D. L. Griffith and J. D. Roberts. ibid.. 87, 4089 (1965).
(14) The spectrum of this compound has recently been reinvestigated at lower temperatures, and the barriers to inversion were determined: see J. E. Anderson, D. L. Griffith, and J. D. Roberts. ibid.. 91, 6371 (1969).
(15) B. H. Korsch and N. V. Riggs. Tetrahedron Lett.. 5897 (1966); G. J. Bishop, B. J. Price. and I. O. Sutherland, Chem. Commun., 672 (1967): A. Foucaud and R. Roudant. C. R. Acad. Sci., Ser. C. 266, 726 (1968).
(16) M. Raban. G. W. J. Kenney, Jr., and F. B. Jones, Jr., J. Amer. Chem. Soc., 91, 6677 (1969); M. Raban and F. B. Jones, Jr., ibid.. 93, 2692 (1971); J. M Lehn and J. Wagner. Chem. Commun., 1298 (1968).

[^0]: (16) This trend is noted not only with all of the PTAD adducts described in this article, but also with the adducts formed with CSI which are reported elsewhere. ${ }^{17}$
 (17) D. J. Pasto, A. F.-T. Chen, G. Ciurdaru, and L. A. Paquette, J. Org. Chem., in press.

[^1]: (25) A. D. Walsh, Trans. Faraday Soc., 45, 179 (1949); Nature (London), 159, 167, 712 (1947).
 (26) The replacement of a sp^{2} p hybridized carbon by a sppp hybridized carbon is expected to result in a destruction of the degeneracy of the degenerate pairs of "Walsh" orbitals in cyclopropane (confirmed by extended Huickel calculations for methylenecyclopropane); however, the loss of the degeneracy of the Walsh orbitals will not affect the qualitative conclusions drawn from this approach.
 (27) The π MO of the $\mathrm{C}_{4}-\mathrm{C}_{5} \pi$ system is placed approximately at the same energy level as the degenerate pair of occupied Walsh orbitals based on a comparison of the photoelectron ionization potentials of cyclopropane (10.53 eV) ${ }^{28}$ and ethylene (10.48 eV). ${ }^{29}$ Again, the replacement of $\mathrm{sp}^{2} \mathrm{p}$ hybridized carbon by sppp hybridized carbon will alter the ionization potentials but the qualitative conclusions derived will not be substantially effected.
 (28) H. Basch, M. B. Robin, N. A. Kuebler, C. Baker, and D. W. Turner, J. Chem. Phys., 51, 52 (1969).
 (29) M. I. Al-Joboury and D. W. Turner, J. Chem. Soc., 4434 (1964).

[^2]: (30) The following bond angles and lengths were employed in the calculations. Cyclopropane: $\mathrm{C}-\mathrm{H}$ bond length. $1.010 \quad \AA$: $\mathrm{C}-\mathrm{C}$ bond length, $1.524 \AA ; \mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle, 120°. Methylenecyclopropane: $\mathrm{C}_{2}-\mathrm{H}$ bond length, $1.010 \AA: \mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{2}-\mathrm{C}_{3}$, and $\mathrm{C}_{3}-\mathrm{C}_{1}$ bond lengths, $1.524 \AA: \mathrm{C}_{1}-\mathrm{C}_{4}$ bond length, $1.309 \AA: \mathrm{C}_{4}-\mathrm{H}$ bond lengths, $1.061 \AA ; \mathrm{H}-\mathrm{C}_{2}-\mathrm{H}$ bond angle, $120^{\circ}, \mathrm{H}-\mathrm{C}_{4}-\mathrm{H}$ bond angle, 120°. Alkenylidenecyclopropane: $\mathrm{C}_{4}-\mathrm{C}_{5}$ bond length, $1.309 \AA$; $\mathrm{C}_{5}-\mathrm{H}$ bond lengths, $1.061 \AA ; \mathrm{H}-\mathrm{C}_{5}-\mathrm{H}$ bond angle. 120°; the remainder of bond lengths and bond angles are the same as in methylenecyclopropane.

[^3]: (31) For a leading reference, see H. Hart and P. A. Law, J. Amer. Chem. Soc., 86, 1957 (1964).
 (32) See ref 17.
 (33) See R. Hoffmann, Tetrahedron Lett., 2907 (1970): H. Gunther, ibid., 5173 (1970).
 (34) This MO description of the interaction of the $\mathrm{C}_{4}-\mathrm{C}_{5}$ double bond of an alkenylidenecyclopropane with the three-membered ring can be easily extended to other cyclopropane-containing systems. In particular, the high reactivity of bromomethylenecyclopropane toward solvolysis compared to vinyl bromide ${ }^{35}$ and the mode of reaction of variously substituted alkenylidenecyclopropanes with chlorosulfonyl isocyanate ${ }^{32}$ can be rationalized in terms of stabilization of the vacant orbital on C_{4} by the Walsh orbitals of the cyclopropane ring.
 (35) T. Bassler and M. Hanack, Tetrahedron Lett., 2171 (1971).

[^4]: (36) H. D. Hartzler, J. Amer. Chem. Soc., 83, 4990 (1961).
 (37) R. C. Cookson. S. S. H. Gilani, and I. D. R. Stevens, J. Chem. Soc., 1905 (1967).

